Mirko Lai, Salvatore Vilella, Giancarlo Ruffo, and Federica Cena

A Complex Networks Approach to Evaluate the 15-Minute City Paradigm and Urban Segregation

COMPLEX NETWORKS 2024

The 13th International Conference on Complex Networks and their Applications

Exploring Urban Accessibility, Connectivity, and Segregation Through Network Science

10 - 12 December, 2024 Istanbul, Turkey

Bright and dark sides of the "15 minute" city

- Walkable and accessible cities:
 everything you *really* need is close:
 - healthcare
 arts, museums, theaters
 - educationparks
 - * public transportation
 - water supply
 - * electricity

- shopping
- * (work)

Self-sufficiency can accelerate
 urban segregation:

- no cars: you are dependent on public transport for mediumlong trips
- smaller urban areas self-organize
 and are governed by homophily
- but larger districts are more heterogeneous in terms of social class, education, income

Is the '15-minute city' idea a utopian ideal or dystopian nightmare?

AP By Philip Marcelo

3 Mar, 2023 03:46 AM ① 5 mins to read

15-minute cities: Path to dystopia or storm in a side street?

Urban planners and transportation professionals will need to address wild accusations about the motives behind 15-minute cities - and relevant criticisms too - if the concept is to scale to its potential

Air Quality & Weather Systems / June 5, 2023

Research questions

- 1. What patterns emerge when using complex network measures?
- 2. How does accessibility relate to urban connectivity and segregation?
- 3. Can I use accessibility and connectivity metrics for comparative purposes at different scales (i.e., cities, districts, census areas, residential addresses)?

- * Data sources: OpenStreetMap, GTFS data, and Census data
 - * Socio-demographic data when available
- * Network construction (given a city *c*):
 - * We map every **PoI** (including bus/metro/train stops) and every residential address to the closest intersection
 - * nodes: intersections; links: streets segments weights: distance and transit time
 - Pedestrian networks for calculating accessibility to services and amenities Gped $= (N_{c}, E_{c})$
 - * Urban transport networks for city scale connectivity $G_c^{\text{urb}} = (N_c, L_c)$

- * Data sources: OpenStreetMap, GTFS data, and Census data
 - * Socio-demographic data when available
- * Network construction (given a city *c*):
 - * We map every **PoI** (including bus/metro/train stops) and every residential address to the closest intersection
 - * nodes: intersections; links: streets segments weights: distance and transit time
 - Pedestrian networks for calculating accessibility to services and amenities G_c^{ped} $= (N_{c}, E_{c})$
 - * Urban transport networks for city scale connectivity $G_c^{\text{urb}} = (N_c, L_c)$

- * Data sources: OpenStreetMap, GTFS data, and Census data
 - * Socio-demographic data when available
- * Network construction (given a city *c*):
 - * We map every **PoI** (including bus/metro/train stops) and every **residential address** to the closest intersection
 - nodes: intersections; links: streets segments
 weights: distance and transit time
 - * **Pedestrian networks** for calculating accessibility to services and amenities $G_c^{\text{ped}} = (N_c, E_c)$
 - * **Urban transport networks** for city scale connectivity $G_c^{\text{urb}} = (N_c, L_c)$

- * Data sources: OpenStreetMap, GTFS data, and Census data
 - * Socio-demographic data when available
- * Network construction (given a city *c*):
 - * We map every **PoI** (including bus/metro/train stops) and every residential address to the closest intersection
 - * nodes: intersections; links: streets segments weights: distance and transit time
 - Pedestrian networks for calculating accessibility to services and amenities G_c^{ped} $= (N_{c}, E_{c})$
 - * Urban transport networks for city scale connectivity $G_c^{\text{urb}} = (N_c, L_c)$

- * Data sources: OpenStreetMap, GTFS data, and Census data
 - * Socio-demographic data when available
- * Network construction (given a city *c*):
 - * We map every **PoI** (including bus/metro/train stops) and every residential address to the closest intersection
 - * nodes: intersections; links: streets segments weights: distance and transit time
 - Pedestrian networks for calculating accessibility to services and amenities G_c^{ped} $= (N_{c}, E_{c})$
 - * Urban transport networks for city scale connectivity $G_c^{\text{urb}} = (N_c, L_c)$

* Given $n \in N_c$

- * PoI-Proximity $\mathcal{P}(n) = t$
- * PoI-Density $\mathcal{D}(n, t)$
- * PoI-Entropy $\mathscr{E}(n, t)$
- * PoI-Accessibility $\mathcal{A}(n, t)$

Pol's categories as in: Nicoletti, L., et al. (2023). Disadvantaged communities have lower access to urban infrastructure. Environment and Planning B: Urban Analytics and City Science, 50(3), 831-849.

PoI's categories:

Mobility

Active Living

Entertainment

Food Choices

Community

Education

Health and Well-being

* Given $n \in N_c$

- * PoI-Proximity $\mathcal{P}(n) = t$
- * PoI-Density $\mathcal{D}(n, t)$
- * PoI-Entropy $\mathscr{E}(n, t)$
- * PoI-Accessibility $\mathcal{A}(n, t)$

PoI's categories:

Mobility

Active Living

Entertainment

Food Choices

Community

Education

Health and Well-being

* Given $n \in N_c$

- * **PoI-Proximity** $\mathcal{P}(n) = t$
- * PoI-Density $\mathcal{D}(n,t)$
- * PoI-Entropy $\mathscr{E}(n,t)$
- * PoI-Accessibility $\mathcal{A}(n,t)$

 $\mathcal{P}(n) = t$: at least one PoI for each category is within *t* minutes walk

* Given $n \in N_c$

- * **PoI-Proximity** $\mathcal{P}(n) = t$
- * PoI-Density $\mathcal{D}(n,t)$
- * PoI-Entropy $\mathscr{E}(n,t)$
- * PoI-Accessibility $\mathcal{A}(n,t)$

 $\mathcal{P}(n) = 12$: at least one PoI for each category is within 12 minutes walk

* Given $n \in N_c$

- * PoI-Proximity $\mathcal{P}(n) = t$
- * PoI-Density $\mathcal{D}(n, t)$
- * PoI-Entropy $\mathscr{E}(n, t)$
- * PoI-Accessibility $\mathcal{A}(n, t)$

DI		
Pol's	categ	sories

Mobility

Active Living

Entertainment

Food Choices

Community

Education

Health and Well-being

 $\mathcal{P}(n) = 12$

* Given $n \in N_c$

- * PoI-Proximity $\mathcal{P}(n) = t$
- * **PoI-Density** $\mathcal{D}(n, t)$
- * PoI-Entropy $\mathscr{E}(n, t)$
- * PoI-Accessibility $\mathcal{A}(n, t)$

PoI's cat	egories:
7 4 1 111	
Mobility	

Active Living

Entertainment

Food Choices

Community

Education

Health and Well-being

 $\mathcal{P}(n) = 12$

* Given $n \in N_c$

- * PoI-Proximity $\mathcal{P}(n) = t$
- * PoI-Density $\mathcal{D}(n, t)$
- * PoI-Entropy $\mathscr{E}(n, t)$
- * PoI-Accessibility $\mathcal{A}(n, t)$

PoI's categories:	
Mobility	
Active Living	
Entertainment	

Food Choices

Community

Education

Health and Well-being

 $\mathcal{P}(n) = 12$ $\mathcal{D}(n, 15) = 1.71$

* Given $n \in N_c$

- * PoI-Proximity $\mathcal{P}(n) = t$
- * PoI-Density $\mathcal{D}(n,t)$
- * **PoI-Entropy** $\mathscr{E}(n, t)$
- * PoI-Accessibility $\mathcal{A}(n,t)$

Po	I's categories:
Ма	obility
Act	tive Living
En	tertainment
Foc	od Choices
Con	mmunity
Edi	ucation
He	alth and Well-bei

 $\mathcal{P}(n) = 12$ $\mathcal{D}(n,15) = 1.71$

 $\mathscr{E}(n,15)$ = the entropy of the distribution of PoIs' categories within $\mathscr{I}(n,15)$ = 2.69

* Given $n \in N_c$

- * PoI-Proximity $\mathcal{P}(n) = t$
- * PoI-Density $\mathcal{D}(n, t)$
- * PoI-Entropy $\mathscr{E}(n, t)$
- * PoI-Accessibility $\mathcal{A}(n, t)$

PoI's categories:
Mobility
Active Living
Entertainment
Food Choices
Community
Education
Health and Well-bea

 $\mathcal{P}(n) = 12$ $\mathcal{D}(n, 15) = 1.71$ $\mathscr{E}(n, 15) = 2.69$

* Given $n \in N_c$

- * PoI-Proximity $\mathcal{P}(n) = t$
- * PoI-Density $\mathcal{D}(n, t)$
- * PoI-Entropy $\mathscr{E}(n, t)$
- * **PoI-Accessibility** $\mathcal{A}(n, t)$

 $\mathscr{A}(n,t) = w_1 \mathscr{P}'(n) + w_2 \mathscr{D}'(n,t) + w_3 \mathscr{E}'(n,t)$

e.g., $w_1 = w_2 = w_3 = 1/3$, and t = 15

PoI's categories:
Mobility
Active Living
Entertainment
Food Choices
Community
Education
Health and Well-beir

 $\mathcal{P}(n) = 12$

 $\mathcal{D}(n,15) = 1.71$

 $\mathscr{E}(n,15) = 2.69$

* Given $n \in N_c$

- * PoI-Proximity $\mathcal{P}(n) = t$
- * PoI-Density $\mathcal{D}(n,t)$
- * PoI-Entropy $\mathscr{E}(n, t)$
- * PoI-Accessibility $\mathcal{A}(n, t)$

PoI's categories:
Mobility
Active Living
Entertainment
Food Choices
Community
Education
Health and Well-bei

 $\mathcal{P}(n) = 12$ $\mathcal{D}(n,15) = 1.71$ $\mathscr{E}(n,15) = 2.69$ $\mathscr{A}(n,15) \in [0,1]$

Accessibility metrics at different scales

- * All the above metrics can be calculated for every node $n \in N_c$
- * RQ1: we can calculate a range of metrics' statistics:
 - scales: census area, network clusters (e.g., by infomap), administrative districts, the city as whole
 - * statistics: min, max, average, std, ...
 - * other:

* ...

- * how much people live in residential addresses with $\mathcal{P}(n) = t$?
- Do income/education/immigration rate correlate with accessibility?

 High correlation (Kendall's $\tau > 0.6$) with other rankings based on variants of this proximity measure [1, 2]

[1] Nicoletti, L., et al. (2023). Disadvantaged communities have lower access to urban infrastructure. Environment and Planning B: Urban Analytics and City Science, 50(3), 831-849. [2] Bruno, M., et al. A universal framework for inclusive 15-minute cities. Nat Cities 1, 633–641 (2024).

~ 90% of Milan and Turin citizens live in places with $\mathcal{P}(n) \leq 15$

t = 15' for PoI-{density, entropy, accessibility)

- * Given $n \in N_c$
 - * (normalized) Closeness $\mathscr{C}(n) = \frac{|N_c| - 1}{\sum_{m \neq n: m \in N_c} t(n, m)}$
 - * t(n, m) is the shortest path length (i.e., temporal distance) that it takes to go from *n* to *m* in G_c^{urb}

Closeness vs PoI-Accessibility

- Low closeness relates to high isolation/ segregation
- Low PoI-Accessibility relates to lack of services at walkable distance
- Bubble charts helps to understand how accessibility relates to urban connectivity and segregation

PoI-Accessibility vs Closeness(t=15')

- RQ2: There are signals that accessibility relates to urban connectivity and segregation
- RQ3: For stronger signals, nodes in N_c can be aggregated in census areas, network clusters (e.g., by infomap), administrative districts, ...

Accessibility, closeness, and population

Accessibility, closeness and income

Milan

Accessibility, closeness and income

Conclusions: focus on citizens!

- * Network based measures:
 - * not only accessibility but also general connectivity
- * A signal that (good / poor) walkable accessibility correlates to (good/poor) urban transport connectivity
 - * Poorly served citizens are not equally distributed world wide
 - * Turin's interesting exception: not always "poorer" accessibility / connectivity is at interplay with "lower income"
- Need for open data and open platforms
- * Ongoing:
 - * Personalized filters for close by services
 - * Unite-and-Close: a magnifying glass for the 15-minute city

Extra slides

Ideal vs real cities

Kudos to Vittorio Loreto!

* Given $n \in N_c$

- * PoI-Proximity $\mathcal{P}(n) = t$
- * PoI-Density $\mathcal{D}(n, t)$
- * PoI-Entropy $\mathscr{E}(n, t)$
- * PoI-Accessibility $\mathcal{A}(n, t)$

Pol's categories as in: Nicoletti, L., et al. (2023). Disadvantaged communities have lower access to urban infrastructure. Environment and Planning B: Urban Analytics and City Science, 50(3), 831-849.

PoI's categories:

Mobility

Active Living

Entertainment

Food Choices

Community

Education

* Given $n \in N_c$

- * PoI-Proximity $\mathcal{P}(n) = t$
- * PoI-Density $\mathcal{D}(n, t)$
- * PoI-Entropy $\mathscr{E}(n, t)$
- * PoI-Accessibility $\mathcal{A}(n, t)$

PoI's categories:

Mobility

Active Living

Entertainment

Food Choices

Community

Education

* Given $n \in N_c$

- * **PoI-Proximity** $\mathcal{P}(n) = t$
- * PoI-Density $\mathcal{D}(n, t)$
- * PoI-Entropy $\mathscr{E}(n, t)$
- * PoI-Accessibility $\mathcal{A}(n, t)$

PoI's categories:

Mobility

Active Living

Entertainment

Food Choices

Community

Education

* Given $n \in N_c$

- * **PoI-Proximity** $\mathcal{P}(n) = t$
- * PoI-Density $\mathcal{D}(n, t)$
- * PoI-Entropy $\mathscr{E}(n, t)$
- * PoI-Accessibility $\mathcal{A}(n, t)$

PoI's categories:

Mobility

Active Living

Entertainment

Food Choices

Community

Education

* Given $n \in N_c$

- * **PoI-Proximity** $\mathcal{P}(n) = t$
- * PoI-Density $\mathcal{D}(n, t)$
- * PoI-Entropy $\mathscr{E}(n, t)$
- * PoI-Accessibility $\mathcal{A}(n, t)$

S

PoI's categories:

Mobility

Active Living

Entertainment

Food Choices

Community

Education

* Given $n \in N_c$

- * **PoI-Proximity** $\mathcal{P}(n) = t$
- * PoI-Density $\mathcal{D}(n, t)$
- * PoI-Entropy $\mathscr{E}(n, t)$
- * PoI-Accessibility $\mathcal{A}(n, t)$

PoI's categories:

Mobility

Active Living

Entertainment

Food Choices

Community

Education

* Given $n \in N_c$

- * **PoI-Proximity** $\mathcal{P}(n) = t$
- * PoI-Density $\mathcal{D}(n, t)$
- * PoI-Entropy $\mathscr{E}(n, t)$
- * PoI-Accessibility $\mathcal{A}(n, t)$

PoI's categories:
Mobility
Active Living
Entertainment
Food Choices
Community
Education
Health and Well-being

* Given $n \in N_c$

- * **PoI-Proximity** $\mathcal{P}(n) = t$
- * PoI-Density $\mathcal{D}(n,t)$
- * PoI-Entropy $\mathscr{E}(n,t)$
- * PoI-Accessibility $\mathcal{A}(n,t)$

Isochrone $\mathcal{F}(n, 12)$

* Given $n \in N_c$

- * PoI-Proximity $\mathcal{P}(n) = t$
- * PoI-Density $\mathcal{D}(n, t)$
- * PoI-Entropy $\mathscr{E}(n, t)$
- * PoI-Accessibility $\mathcal{A}(n, t)$

DI		
Pol's	categ	gories

Mobility

Active Living

Entertainment

Food Choices

Community

Education

Health and Well-being

* Given $n \in N_c$

- * PoI-Proximity $\mathcal{P}(n) = t$
- * **PoI-Density** $\mathcal{D}(n, t)$
- * PoI-Entropy $\mathscr{E}(n, t)$
- * PoI-Accessibility $\mathcal{A}(n, t)$

PoI's cat	egories:
7 4 1 111	
Mobility	

Active Living

Entertainment

Food Choices

Community

Education

Health and Well-being

* Given $n \in N_c$

- * PoI-Proximity $\mathcal{P}(n) = t$
- * PoI-Density $\mathcal{D}(n, t)$
- * PoI-Entropy $\mathscr{E}(n, t)$
- * PoI-Accessibility $\mathcal{A}(n, t)$

PoI's categories:
Mobility
Active Living
Entertainment

Food Choices

Community

Education

Health and Well-being

 $\mathcal{P}(n) = 12$ $\mathcal{D}(n, 15) = 1.71$

* Given $n \in N_c$

- * PoI-Proximity $\mathcal{P}(n) = t$
- * PoI-Density $\mathcal{D}(n,t)$
- * **PoI-Entropy** $\mathscr{E}(n, t)$
- * PoI-Accessibility $\mathcal{A}(n, t)$

Po	I's categories:
Ма	bility
Act	tive Living
En	tertainment
Foc	od Choices
Con	mmunity
Edi	ucation
He	alth and Well-bei

 $\mathcal{P}(n) = 12$ $\mathcal{D}(n,15) = 1.71$

 $\mathscr{E}(n,15)$ = the entropy of the distribution of PoIs' categories within $\mathscr{I}(n,15)$ = 2.69

* Given $n \in N_c$

- * PoI-Proximity $\mathcal{P}(n) = t$
- * PoI-Density $\mathcal{D}(n, t)$
- * PoI-Entropy $\mathscr{E}(n, t)$
- * PoI-Accessibility $\mathcal{A}(n, t)$

PoI's categories:
Mobility
Active Living
Entertainment
Food Choices
Community
Education
Health and Well-bea

 $\mathcal{P}(n) = 12$ $\mathcal{D}(n, 15) = 1.71$ $\mathscr{E}(n, 15) = 2.69$

* Given $n \in N_c$

- * PoI-Proximity $\mathcal{P}(n) = t$
- * PoI-Density $\mathcal{D}(n, t)$
- * PoI-Entropy $\mathscr{E}(n, t)$
- * **PoI-Accessibility** $\mathcal{A}(n, t)$

 $\mathscr{A}(n,t) = w_1 \mathscr{P}'(n) + w_2 \mathscr{D}'(n,t) + w_3 \mathscr{E}'(n,t)$

e.g., $w_1 = w_2 = w_3 = 1/3$, and t = 15

PoI's categories:
Mobility
Active Living
Entertainment
Food Choices
Community
Education
Health and Well-beir

 $\mathcal{P}(n) = 12$

 $\mathcal{D}(n,15) = 1.71$

 $\mathscr{E}(n,15) = 2.69$

* Given $n \in N_c$

- * PoI-Proximity $\mathcal{P}(n) = t$
- * PoI-Density $\mathcal{D}(n,t)$
- * PoI-Entropy $\mathscr{E}(n, t)$
- * PoI-Accessibility $\mathcal{A}(n, t)$

PoI's categories:
Mobility
Active Living
Entertainment
Food Choices
Community
Education
Health and Well-bei

 $\mathcal{P}(n) = 12$ $\mathcal{D}(n,15) = 1.71$ $\mathscr{E}(n,15) = 2.69$ $\mathscr{A}(n,15) \in [0,1]$

Alternatives for density and entropy

* Given $n \in N_c$

- * PoI-Proximity $\mathcal{P}(n) = t$
- * PoI-Density $\mathcal{D}(n, t)$
- * PoI-Entropy $\mathscr{E}(n, t)$
- * PoI-Accessibility $\mathcal{A}(n, t)$

DI		
Pol's	categ	gories

Mobility

Active Living

Entertainment

Food Choices

Community

Education

Health and Well-being

* Given $n \in N_c$

- * PoI-Proximity $\mathcal{P}(n) = t$
- * **PoI-Density** $\mathcal{D}(n, t)$

We aim to give a higher value to isochrones containing more PoIs

- * PoI-Entropy $\mathscr{E}(n, t)$
- * PoI-Accessibility $\mathcal{A}(n, t)$

PoI's categories:

Mobility

Active Living

Entertainment

Food Choices

Community

Education

Health and Well-being

$$(n, t) = \frac{|\operatorname{PoIs} \in \mathcal{I}(t)|}{\operatorname{Area of} \mathcal{I}(n, t)}$$

PoI's categories:

Mobility

Active Living

Entertainment

Food Choices

Community

Education

Health and Well-being

$$(n, t) = \frac{|\operatorname{PoIs} \in \mathcal{I}(t)|}{\operatorname{Area of} \mathcal{I}(n, t)}$$

PoI's categories:

Mobility

Active Living

Entertainment

Food Choices

Community

Education

Health and Well-being

* Given $n \in N_c$

- * PoI-Proximity $\mathcal{P}(n) = t$
- * PoI-Density $\mathcal{D}(n, t)$
- * PoI-Entropy $\mathscr{E}(n, t)$
- * PoI-Accessibility $\mathcal{A}(n, t)$

PoI's categories:
Mobility
Active Living
Entertainment

Food Choices

Community

Education

Health and Well-being

 $\mathcal{P}(n) = 12$ $\mathcal{D}(n, 15) = 1.71$

- * Given $n \in N_c$
 - * PoI-Proximity $\mathcal{P}(n) = t$

We aim to give a higher value to isochrones containing a greater diversity of PoIs' categories

- * PoI-Density $\mathcal{D}(n,t)$
- * **PoI-Entropy** $\mathscr{E}(n, t)$
- * PoI-Accessibility $\mathcal{A}(n,t)$

PoI's categories:

Mobility

Active Living

Entertainment

Food Choices

Community

Education

Health and Well-being

 $\mathcal{P}(n) = 12$

 $\mathcal{D}(n,15) = 1.71$

 $\mathscr{E}(n,15)$ = the entropy of the distribution of PoIs' categories within $\mathscr{F}(n,15)$ = 2.69

* PoI-Proximity $\mathcal{P}(n) = t$

- * PoI-Density $\mathcal{D}(n, t)$
- * **PoI-Entropy** $\mathscr{E}(n, t)$
- * PoI-Accessibility $\mathcal{A}(n, t)$

 $\mathscr{E}(n, t)$ = the entropy of the distribution of PoIs' categories within $\mathscr{I}(n, t)$

> We aim to give a higher value to isochrones containing a greater diversity of PoIs' categories

PoI's categories:

Mobility

Active Living

Entertainment

Food Choices

Community

Education

Health and Well-being

 $\mathcal{P}(n) = 12$ $\mathcal{D}(n, 15) = 1.71$

PoI's categories:

Mobility

Active Living

Entertainment

Food Choices

Community

Education

Health and Well-being

 $\mathcal{P}(n) = 12$ $\mathcal{D}(n,15) = 1.71$

* Given $n \in N_c$

- * PoI-Proximity $\mathcal{P}(n) = t$
- * PoI-Density $\mathcal{D}(n, t)$
- * PoI-Entropy $\mathscr{E}(n, t)$
- * PoI-Accessibility $\mathcal{A}(n, t)$

PoI's categories:
Mobility
Active Living
Entertainment
Food Choices
Community
Education
Health and Well-bea

 $\mathcal{P}(n) = 12$ $\mathcal{D}(n, 15) = 1.71$ $\mathscr{E}(n, 15) = 2.69$

* Given $n \in N_c$

- * PoI-Proximity $\mathcal{P}(n) = t$
- * PoI-Density $\mathcal{D}(n, t)$
- * PoI-Entropy $\mathscr{E}(n, t)$
- * **PoI-Accessibility** $\mathcal{A}(n, t)$

 $\mathscr{A}(n,t) = w_1 \mathscr{P}'(n) + w_2 \mathscr{D}'(n,t) + w_3 \mathscr{E}'(n,t)$

e.g., $w_1 = w_2 = w_3 = 1/3$, and t = 15

PoI's categories:
Mobility
Active Living
Entertainment
Food Choices
Community
Education
Health and Well-beir

 $\mathcal{P}(n) = 12$

 $\mathcal{D}(n,15) = 1.71$

 $\mathscr{E}(n,15) = 2.69$

* Given $n \in N_c$

- * PoI-Proximity $\mathcal{P}(n) = t$
- * PoI-Density $\mathcal{D}(n,t)$
- * PoI-Entropy $\mathscr{E}(n, t)$
- * PoI-Accessibility $\mathcal{A}(n, t)$

PoI's categories:
Mobility
Active Living
Entertainment
Food Choices
Community
Education
Health and Well-bei

 $\mathcal{P}(n) = 12$ $\mathcal{D}(n,15) = 1.71$ $\mathscr{E}(n,15) = 2.69$ $\mathscr{A}(n,15) \in [0,1]$

closeness vs poi-accessibility

Milan, census areas

Turin, census areas

Turin, infomap clusters

Turin, infomap clusters

Istanbul, census areas

Istanbul, infomap clusters

